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ment (for structure determination), while for some 
crystals with only moderate mosaic spread such data 
collection will be practicable. 
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Abstract 

Two-phase structure invariants of type • = ~h "~ ~0--h 
are estimated in centrosymmetrical space groups, and 
in non-centrosymmetrical ones when ~0h is a sym- 
metry-restricted phase. The distributions are of von 
Mises type with concentration parameters half those 
occurring in non-centric distributions. 

Notation 

N number of atoms in the unit cell 
t number of atoms in the asymmetric unit 
f = f ' + i f f  general expression for the atomic scattering 

factor 
F+ = A++ iB+ / structure factors of the reflexions 
F- A-+ iB- j' h and -h  respectively 
~o +, ~o- phases of F +, F -  
Cs = (Rs, Ts) Sth symmetry operator: Rs is the rotational 

part, Ts the translational part 

scJ - s=l cos 2"n'h(Rsrj +Ts) 

r/j =~'~s=t sin 2~rh(Rsrj+Ts) 

eh Wilson's (1980) statistical weight of the reflection h 

Y~+= e Y.j~I (fj2 +f~,2) average value of IFhl 2 at given Ihl 

2 - =  e ~j~, (f~2 _f;,,2) 

R = F / ~  2 normalized modulus of the structure factor 
Dl(x) = It(x)/Io(x) ratio of modified Bessel functions of 

order 1 and 0 
cs, ncs centrosymmetric, non-centrosymmetric 

1. Introduction 

Probabilistic approaches have been applied by several 
authors to crystal structures with dispersive atoms 
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(see Srinivasan & Parthasarathy, 1976, and literature 
there quoted; Kroon, Spek & Krabbendam, 1977; 
Heinerman, Krabbendam, Kroon & Spek, 1978). 
Among the most recent results connected with this 
paper we quote: 

(a) estimation of two-phase and three-phase struc- 
ture invariants (Hauptman, 1982; Giacovazzo, 1983); 

(b) estimation of probabilistic coefficients for a 
Patterson synthesis devoted to finding the positions 
of anomalous scatterers (Cascarano & Giacovazzo, 
1984); 

(c) formulas estimating phases of the complete 
crystal structures when the position of the anomalous 
scatterers are known (Cascarano & Giacovazzo, 
1985). 

Probabilistic treatment of the anomalous disper- 
sion effect is more important in ncs space groups: 
accordingly all the approaches (a), (b), (c) were 
described in Cascarano & Giacovazzo (1985). It is, 
however, of non-negligible interest to apply proba- 
bilistic methods for the estimation of the structure 
invariants in cs space groups, or in ncs space groups 
when the invariants are constituted by symmetry- 
restricted phases. This paper is devoted to the estima- 
tion of two-phase structure invariants in the above 
conditions. For the sake of brevity we give here only 
the final formulas: for the mathematical approach the 
reader is referred to a recent book (Giacovazzo, 1980). 

2. The estimation of  • = ~h + ~--h in centrosymmetric 
crystals 

In cs space groups F + = F - :  thus, in order to calculate 
= ~0h+~0-~, the simpler distribution P(A, B) may 

be calculated instead of P ( A  ÷, A- ,  B ÷, B-) ,  as has 
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been done in ncs space groups (Hauptman, 1982; 
Giacovazzo, 1983). 

The distribution P(A, B) in cs crystals when disper- 
sive atoms are present has been determined by Wilson 
(1980): 

P(A, B)'-'(2rrr)-' 
xexp-(~2Ai-23"AB+ot2B2)/(262) (1) 

where 

N 
a2 = ½(E+ + E - )  = e Z f,2 

j = l  

N 
ft.t2 / 32 =½(Y',+-2_) = e 2 a, 

j = l  

N 
3 ' =  e ~ f ' f "  - • j j j j ,  6 = ( a 2 #  2 3"2)1/2 

j = l  

From (1) Wilson derived the marginal distribution 
function 

where 

P(IFI) = (IFI/6) exp [ -  Z+IFI2/(462)] 

x Xo[SIFl~/(46z)] (2) 

S = [ (  0~ 2 -  #2)2 -t- 43 '2]  1/2. 

For non-zero 6 the distribution (2) behaves quite 
differently from the distribution for a non-dispersive 
cs crystal and reduces to this when 6 goes to zero. 
The conditional distribution P(~IIFI) was not 
derived by Wilson: however, it may readily be derived 
by (1). We obtain 

P(~p IIFI)=[2~rlo(Z)] -1 exp[z cos(2~o-6)]  (3) 

where 

Z=IFI=S/(46 ~) (4) 

and tan 6 = 2y/Y_. 
Equation (3) is a bimodal von Mises distribution 

with maxima at ¢ = 6 /2  and 6 / 2 +  7r. Also the distri- 
bution P(OIIFI) where O = ¢ + + ¢ - = 2 ¢  + is of 
interest: 

P(OllFl)-'[2rrlo(Z)]-' e x p [ Z c o s ( O - 0 ) ] .  (5) 

If lFI is replaced by the normalized modulus R, then 
(5) may be written 

P(OIR)"-[2'n'Io(Qc)] -1 e x p [ Q ~ c o s ( O - 6 ) ]  (6) 

where Qe=(R2~.,+ S)/(462). 
If (6) is compared with the distribution P(O) in 

the case of anomalous diffraction for ncs crystals [see 
equation (5) in Giacovazzo, 1983] it may be seen that: 

(a) both cs and ncs distributions are of von Mises 
type; 

(b) both of them reach their maximum at 6; 

(c) Qc = Q/2. This result should explain why the 
estimation of [F"I by means of equation (6) in the 
paper by Cascarano & Giacovazzo (1985) is more 
accurate in ncs space groups than in cs ones. 

3. The estimation of • = ~Ph + ~P--h in 
non-centrosymmetric crystals when 

is a symmetry-restricted phase 

In a non-dispersive structure let q~h be a phase restric- 
ted (because of symmetry) to ~r and let Cr = (Rr, T,) 
be the symmetry operator for which hR = - h  (then 
~, = 7rhTr + nTr). When dispersive atoms are present 
the contribution to Fh from the real part of the scatter- 
ing factors will still be restricted to ~r, while, because 
of the supplementary contribution from the imaginary 
part of the scattering factors, ~h may deviate from 
~r. Since 

Fh = ~ (f~j--Jj' rb)+ i ~ (f~r b + f'r- J j b j J ,  
j = l  j = l  

' i F_h= I; (f~j+J~"nj)+ i ( - / j n j + f ; ~ ) ,  
j = l  j = l  

Fh and F_h are not the complex conjugates of each 
other but the identity I Fhl = I F hi still holds. Accord- 
ingly we can limit ourselves to calculate the joint 
probability distiibution P(A, B). We obtain 

P(A, B) ~- (27r3')-' exp [-(fl'2A 2 

-2v'AB+a'2B2)/(26'2)] (7) 

where 

a'2=½y~+ +½Y~_cos27rhTr-ysin2rrhTr (8a) 

/3'2 = ½Y~+ - ½Y~_ cos 27rhTr + y sin 27rhT, (8b) 

y ' =  y cos 27rhTr +½Y~_ sin 27rhTr. (8c) 

From (7) the marginal distribution 

P(IFI) = (IFI/a') exp [-E+lf l2/(aa'=)]  
x Io[S'1FI2/(48'2)] (9) 

is readily found, where 
a t  = (O¢,2#,2__ 3't2)1/2 

S ' =  [(a,2_/3,2)2 + 4~,,211/2. 

From definitions (8) it may be seen that S ' =  S and 
6 ' -  6, so that (9) coincides with (2). It may be con- 
cluded that the distribution P(IFI) in ncs dispersive 
crystals for symmetry-restricted reflexions coincides 
with the distribution P(IF[) in cs dispersive crystals. 

From (7) the conditional distribution 

P(~ollFl)=[2rrlo(Z)]-' exp[Z cos(2~o-6')] (10) 

arises, where 

cos ¢ '  = (a '2- /3 '2) /S ,  sin 6'  = 23,'/S. (11) 
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Equation (10) may be considered a generalization of 
(5)" indeed, if 7rbTr = nm then a ' 2 = a  2, /3'2=/32, 
~/t2 = ,)/2. 

The distribution of • = ~h + q~-h may be calculated 
by considering that ~h-~-~- -h=2(~h- - t~ r ) -  After a 
straightforward change of variable (10) becomes 

P( ,I, [ I FI) = [ 2 ~Io( Z)  ]-'  

xexp [Z  cos(~ + 2~or- ~')]. (12) 

By means of (11) it may be found that 

cos(2~or-~ ' )=Y~_/S and s i n ( 2 ~ o ~ - ~ ' ) = 2 y / S  

so that 

tan (2~0r- ~') = tan ~. 

Equation (12) is therefore identical to (5): it may be 

concluded that P ( ~ [ I F [ )  is the same both for cs 
crystals and for restricted-phase reflexions in ncs 
crystals. 
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Abstract 
X-ray diffraction intensity data measured on two four- 
circle diffractometers from a crystal of the compound 
potassium hydrogen (2R, 3 R)-tartrate have been used 
to study the effect of absorption correction, data 
region, stability constant and neglect of light atoms 
in the atomic model on the least-squares estimate of 
the absolute-structure (inversion-twin) parameter x. 
It is shown that for a complete data set with Friedel 
pairs measured in the same plane of diffraction, an 
absorption correction reduced the e.s.d, of x without 
significantly altering its value. For data sets where 
only one member of each Friedel pair is allowed to 
contribute in the least-squares analysis, e.s.d.'s and 
deviations of x from its ideal value are increased 
compared with complete data sets containing both 
members of each Friedel pair. Certain aspects of 
combining a complete data set consisting of one asym- 
metric unit of reciprocal space with all-sphere 
measurements of absolute-structure-sensitive reflec- 
tions have also been investigated. Lowering the value 
of the stability constant increases the e.s.d, of x, 
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produces values of x closer to its ideal value for 
complete data sets and increases the variability of x 
for incomplete data sets. Neglect of hydrogen atoms 
from the atomic model produces a very small but 
quantifiable shift in the estimated value of x. 

Introduction 
In previous work (Flack, 1983; Bemardinelli & Hack, 
1985) it has been shown that absolute structure may 
be determined very efficiently by assuming any non- 
centrosymmetric crystal to be an inversion twin and 
letting the absolute-structure (inversion-twin) param- 
eter x be a variable in the least-squares refinement. 
Whereas a great deal is known about the bias that 
may be caused in least-squares-estimated atomic posi- 
tional and displacement parameters due to systematic 
effects such as absorption, thermal diffuse scattering, 
extinction, scan-range truncation etc., little at present 
is understood of the behaviour of the absolute-struc- 
ture parameter. It is the intention of this paper to 
present results on four systematic effects; absorption, 
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